Perisaccadic mislocalization of visual targets by head-free gaze shifts: visual or motor?

نویسندگان

  • Sigrid M C I van Wetter
  • A John van Opstal
چکیده

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-movement feedback and therefore predict that errors should vary systematically with the amplitude and kinematics of the intervening saccade. Instead, we reported that errors depend only weakly on the saccade amplitude. An alternative explanation for the data is that around the saccade the perceived target location undergoes a uniform transient shift in the saccade direction, but that the oculomotor feedback is, on average, accurate. This "visual shift" hypothesis predicts that errors will also remain insensitive to kinematic variability within much larger head-free gaze shifts. Here we test this prediction by presenting a brief visual probe near the onset of gaze saccades between 40 and 70 degrees amplitude. According to models with inaccurate gaze-motor feedback, the expected perisaccadic errors for such gaze shifts should be as large as 30 degrees and depend heavily on the kinematics of the gaze shift. In contrast, we found that the actual peak errors were similar to those reported for much smaller saccadic eye movements, i.e., on average about 10 degrees, and that neither gaze-shift amplitude nor kinematics plays a systematic role. Our data further corroborate the visual origin of perisaccadic mislocalization under open-loop conditions and strengthen the idea that efferent feedback signals in the gaze-control system are fast and accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.

When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades execut...

متن کامل

A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness.

Spatial perception, the localization of stimuli in space, can rely on visual reference stimuli or on egocentric factors such as a stimulus position relative to eye gaze. In total darkness, only an egocentric reference frame provides sufficient information. When stimuli are briefly flashed around saccades, the localization error reveals potential mechanisms of updating such reference frames as d...

متن کامل

Interference during eye movement preparation shifts the timing of perisaccadic compression.

Our perception of the surrounding environment remains stable despite the fact that we frequently change the retinal position of input by rapid gaze shifts (saccades). There is a long-standing debate whether visual stability depends on an active mechanism using an efference copy of the impending saccadic motor command. Behavioral studies showing changes in perception around the time of saccades ...

متن کامل

Amplitude changes in response to target displacements during human eye–head movements

Sensorimotor adaptation, the ability to adjust motor output in response to persistent changes in sensory input, is a key function of the central nervous system. Although a great deal is known about vestibulo-ocular reflex and saccadic adaptation, relatively little is known about the behavior and neural mechanisms underlying gaze adaptation when the head is free to move. In an attempt to underst...

متن کامل

Human gaze shifts to acoustic and visual targets.

Eye and head contributions to orienting gaze shifts have been primarily studied using visual targets. Consequently, relatively little is known about the kinematics of eye and head movements in gaze shifts to acoustic targets. Although early work in nonhuman primates indicates that orienting responses to acoustic and visual targets are similar, suggesting that a common motor program is used for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 4  شماره 

صفحات  -

تاریخ انتشار 2008